skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Olivar, Clarissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon fiber reinforced polymers (CFRPs, or composites) are increasingly replacing traditional manufacturing materials used in the automobile, aerospace, and energy sectors. With this shift, it is vital to develop end-of-life processes for CFRPs that retain the value of both the carbon fibers and the polymer matrix. Here we demonstrate a strategy to upcycle pre- and post-con- sumer polystyrene-containing CFRPs, crosslinked with unsaturated polyesters or vinyl esters, to benzoic acid. The thermoset matrix is upgraded via biocatalysis utilizing an engineered strain of the filamentous fungus Aspergillus nidulans, which gives access to valuable secondary metabolites in high yields, exemplified here by (2Z,4Z,6E)-octa-2,4,6-trienoic acid. Reactions are engineered to preserve the carbon fibers, with much of their sizing, so that the isolated carbon fiber plies are manufactured into new composite coupons that exhibit mechanical properties comparable to virgin manufacturing substrates. In sum, this represents the first system to reclaim high value from both the fiber fabric and polymer matrix of a CFRP. 
    more » « less
    Free, publicly-accessible full text available November 6, 2025
  2. Investigations into the reactivity, properties, and applications of osmium(IV) tetraaryl complexes have been hampered by their low yielding syntheses from volatile and toxic OsO4 (typically ≤34%). Here we show that known air-stable M(aryl)4 compounds (M = Os, Ru; aryl = 2-tolyl, 2,5-xylyl) can be prepared in ≤73% yields using new, less hazardous (Oct4N)2[MX6] precursors (M = Os, Ru; X = Cl, Br). This approach also facilitates the preparation of Os(mesityl)4 (Os3) for the first time, a complex comprising bulky 2,6-dimethyl substituted aryl ligands, albeit in low yield (5%). To better understand these yield extremes, we track, by synthesizing two additional new complexes with different 2-substituted σ-aryl ligands, a clear relationship between the yields of Os(aryl)4 and ligand steric bulk. Single-crystal X-ray structures of these compounds indicate that the observed yield trend reflects the ease of accommodating aryl substituents into an open pocket that lies directly opposite each M-aryl coordination site. We perform variable-temperature 1H NMR studies of Os3, utilize a "tetrahedricity" metric to assess geometric distortion in Ru(aryl)4 and Os(aryl)4 materials, and calculate cone angle and percentage buried volume metrics to further illustrate and help quantify -aryl ligand steric properties. Solution cyclic voltammograms of Os(aryl)4 show that the potentials of their reversible 1−/0 and 0/1+ redox features can be fine-tuned by varying aryl substituents, and that Os3 exhibits an additional 1+/2+ redox event not previously observed in this class of compounds. Taken together, this work helps to advance the potential application of these relatively underexplored organometallic complexes in established and emerging areas of molecular materials science, such as extended molecular frameworks and self-assembled monolayers, where analogous tetraphenylmethane and silane species (M = C, Si) have been frequently targeted. 
    more » « less